To prove that Gaussian elimination can be performed without row interchanges, we show that each of the matrices $A^{(2)}$, $A^{(3)}$, ..., $A^{(n)}$ is strictly diagonally dominant. (at each step pivot elements are nonzero) Since A is strictly diagonally dominant, $a_{11} \neq 0$ and $A^{(2)}$ can be formed

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{1j}^{(1)}a_{i1}^{(1)}}{a_{11}^{(1)}}, \text{ for } 2 \le j \le n$$

 $i = 2, 3, \dots, n,$

First, $a_{i1}^{(2)} = 0$. The triangle inequality implies that

$$\sum_{\substack{j=2\\j\neq i}}^{n} |a_{ij}^{(2)}| = \sum_{\substack{j=2\\j\neq i}}^{n} \left| a_{ij}^{(1)} - \frac{a_{1j}^{(1)}a_{i1}^{(1)}}{a_{11}^{(1)}} \right| \le \sum_{\substack{j=2\\j\neq i}}^{n} |a_{ij}^{(1)}| + \sum_{\substack{j=2\\j\neq i}}^{n} \left| \frac{a_{1j}^{(1)}a_{i1}^{(1)}}{a_{11}^{(1)}} \right|$$

But since A is strictly diagonally dominant,

$$\sum_{\substack{j=2\\j\neq i}}^{n} |a_{ij}^{(1)}| < |a_{ii}^{(1)}| - |a_{i1}^{(1)}| \quad \text{and} \quad \sum_{\substack{j=2\\j\neq i}}^{n} |a_{1j}^{(1)}| < |a_{11}^{(1)}| - |a_{1i}^{(1)}|,$$

SO

$$\sum_{\substack{j=2\\j\neq i}}^{n} |a_{ij}^{(2)}| < |a_{ii}^{(1)}| - |a_{i1}^{(1)}| + \frac{|a_{i1}^{(1)}|}{|a_{11}^{(1)}|} (|a_{11}^{(1)}| - |a_{1i}^{(1)}|) = |a_{ii}^{(1)}| - \frac{|a_{i1}^{(1)}||a_{1i}^{(1)}|}{|a_{11}^{(1)}|}$$

The triangle inequality also implies that

$$|a_{ii}^{(1)}| - \frac{|a_{i1}^{(1)}||a_{1i}^{(1)}|}{|a_{11}^{(1)}|} \le \left|a_{ii}^{(1)} - \frac{|a_{i1}^{(1)}||a_{1i}^{(1)}|}{|a_{11}^{(1)}|}\right| = |a_{ii}^{(2)}|.$$

which gives

$$\sum_{\substack{j=2\\j\neq i}}^n |a_{ij}^{(2)}| < |a_{ii}^{(2)}|$$

This establishes the strict diagonal dominance for rows $2, \ldots, n$. But the first row of $A^{(2)}$ and A are the same, so $A^{(2)}$ is strictly diagonally dominant. The process for other matrices is similar.

Positive Definite Matrices

A matrix *A* is **positive definite** if it is symmetric and if $\mathbf{x}^t A \mathbf{x} > 0$ for every *n*-dimensional vector $\mathbf{x} \neq \mathbf{0}$.

$$\mathbf{x}^{t} A \mathbf{x} = [x_{1}, x_{2}, \cdots, x_{n}] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= [x_1, x_2, \cdots, x_n] \begin{bmatrix} \sum_{j=1}^n a_{1j} x_j \\ \sum_{j=1}^n a_{2j} x_j \\ \vdots \\ \sum_{j=1}^n a_{nj} x_j \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \end{bmatrix}$$

Example

Show that the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

is positive definite

Solution Suppose x is any three-dimensional column vector. Then

$$\mathbf{x}^{t} A \mathbf{x} = [x_{1}, x_{2}, x_{3}] \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= [x_1, x_2, x_3] \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 \end{bmatrix}$$
$$= 2x_1^2 - 2x_1x_2 + 2x_2^2 - 2x_2x_3 + 2x_3^2.$$

Rearranging the terms gives

$$\mathbf{x}^{t}A\mathbf{x} = x_{1}^{2} + (x_{1}^{2} - 2x_{1}x_{2} + x_{2}^{2}) + (x_{2}^{2} - 2x_{2}x_{3} + x_{3}^{2}) + x_{3}^{2}$$
$$= x_{1}^{2} + (x_{1} - x_{2})^{2} + (x_{2} - x_{3})^{2} + x_{3}^{2},$$

which implies that

$$x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 > 0$$

unless $x_1 = x_2 = x_3 = 0$.

Theorem

If A is an $n \times n$ positive definite matrix, then

(i) A has an inverse; (ii) $a_{ii} > 0$, for each i = 1, 2, ..., n; (iii) $\max_{1 \le k, j \le n} |a_{kj}| \le \max_{1 \le i \le n} |a_{ii}|$; (iv) $(a_{ij})^2 < a_{ii}a_{jj}$, for each $i \ne j$.

Definition

A leading principal submatrix of a matrix A is a matrix of the form

$$A_{k} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{bmatrix}$$

for some $1 \le k \le n$.

Theorem

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Example

Show that the following matrix is positive definite,

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Solution Note that

det
$$A_1 = det[2] = 2 > 0$$
,
det $A_2 = det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 4 - 1 = 3 > 0$,

and

$$\det A_3 = \det \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = 2 \det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - (-1) \det \begin{bmatrix} -1 & -1 \\ 0 & 2 \end{bmatrix}$$
$$= 2(4-1) + (-2+0) = 4 > 0.$$

In agreement with the previous theorem.

Theorem

The symmetric matrix A is positive definite if and only if Gaussian

elimination without row interchanges can be performed on the linear

system $A\mathbf{x} = \mathbf{b}$ with all pivot elements positive.

Corollary

LDL^t Factorization

- The matrix A is positive definite if and only if A can be factored in the form
- LDL^t , where L is lower triangular with 1s on its diagonal and D is a
- diagonal matrix with positive diagonal entries.

Corollary

- Let A be a symmetric $n \times n$ matrix for which Gaussian elimination can
- be applied without row interchanges. Then A can be factored into LDL^t ,
- where *L* is lower triangular with 1son its diagonal and *D* is the diagonal matrix with $a_{11}^{(1)}, \ldots, a_{nn}^{(n)}$ on its diagonal.

Example

Determine the *LDL^t* factorization of the positive definite matrix

$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}$$

Solution The LDL^t factorization has 1s on the diagonal of the lower triangular matrix L so we need to have

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} d_1 & d_1 l_{21} & d_1 l_{31} \\ d_1 l_{21} & d_2 + d_1 l_{21}^2 & d_2 l_{32} + d_1 l_{21} l_{31} \\ d_1 l_{31} & d_1 l_{21} l_{31} + d_2 l_{32} & d_1 l_{31}^2 + d_2 l_{32}^2 + d_3 \end{bmatrix}$$

Thus

 $a_{11}: 4 = d_1 \Longrightarrow d_1 = 4, \qquad a_{21}: -1 = d_1 l_{21} \Longrightarrow l_{21} = -0.25$ $a_{31}: 1 = d_1 l_{31} \Longrightarrow l_{31} = 0.25, \qquad a_{22}: 4.25 = d_2 + d_1 l_{21}^2 \Longrightarrow d_2 = 4$ $a_{32}: 2.75 = d_1 l_{21} l_{31} + d_2 l_{32} \Longrightarrow l_{32} = 0.75, \quad a_{33}: 3.5 = d_1 l_{31}^2 + d_2 l_{32}^2 + d_3 \Longrightarrow d_3 = 1,$ and we have

$$A = LDL^{t} = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.25 & 0.75 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -0.25 & 0.25 \\ 0 & 1 & 0.75 \\ 0 & 0 & 1 \end{bmatrix}.$$

Corollary

Cholesky Factorization

The matrix A is positive definite if and only if A can be factored in the form

 LL^t , where L is lower triangular with nonzero diagonal entries.

Example

Determine the Cholesky LL^t factorization of the positive definite matrix

$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}$$

Solution The LL^t factorization does not necessarily has 1s on the diagonal of the lower triangular matrix L so we need to have

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$
$$= \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$

Thus

 $a_{11}: 4 = l_{11}^2 \implies l_{11} = 2, \qquad a_{21}: -1 = l_{11}l_{21} \implies l_{21} = -0.5$ $a_{31}: 1 = l_{11}l_{31} \implies l_{31} = 0.5, \qquad a_{22}: 4.25 = l_{21}^2 + l_{22}^2 \implies l_{22} = 2$ $a_{32}: 2.75 = l_{21}l_{31} + l_{22}l_{32} \implies l_{32} = 1.5, \quad a_{33}: 3.5 = l_{31}^2 + l_{32}^2 + l_{33}^2 \implies l_{33} = 1,$

and we have

$$A = LL^{t} = \begin{bmatrix} 2 & 0 & 0 \\ -0.5 & 2 & 0 \\ 0.5 & 1.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -0.5 & 0.5 \\ 0 & 2 & 1.5 \\ 0 & 0 & 1 \end{bmatrix}.$$

Band Matrices

Matrices that all their nonzero entries concentrate about the diagonal.

band width w = p + q - 1

p: the number of diagonals above, and including, the mail diagonal on

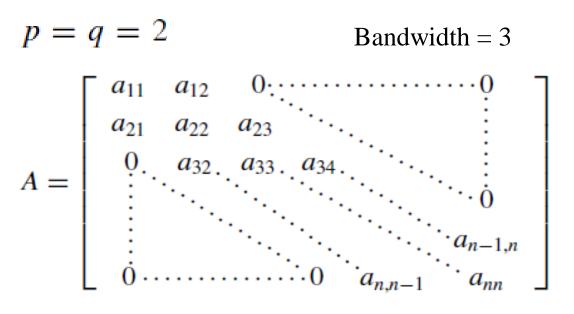
which nonzero entries may lie.

q: the number of diagonals below, and including, the mail diagonal on

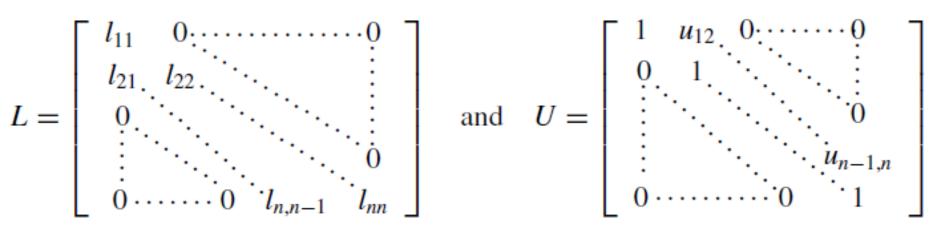
which nonzero entries may lie.

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & -5 & -6 \end{bmatrix} \qquad p = q = 2$$
$$w = 2 + 2 - 1 = 3$$

Tridiagonal Matrices



Crout Factorization for Tridiagonal Linear Systems A = LU



The multiplication involved with A = LU gives,

 $a_{11} = l_{11};$

$$a_{i,i-1} = l_{i,i-1}$$
, for each $i = 2, 3, ..., n$;

$$a_{ii} = l_{i,i-1}u_{i-1,i} + l_{ii}$$
, for each $i = 2, 3, ..., n$;

 $a_{i,i+1} = l_{ii}u_{i,i+1}$, for each i = 1, 2, ..., n - 1.