To prove that Gaussian elimination can be performed without row interchanges, we show that each of the matrices $A^{(2)}, A^{(3)}, \ldots, A^{(n)}$
is strictly diagonally dominant. (at each step pivot elements are nonzero)
Since A is strictly diagonally dominant, $a_{11} \neq 0$ and $A^{(2)}$ can be formed

$$
\begin{aligned}
& a_{i j}^{(2)}=a_{i j}^{(1)}-\frac{a_{1 j}^{(1)} a_{i 1}^{(1)}}{a_{11}^{(1)}}, \quad \text { for } \quad 2 \leq j \leq n \\
& i=2,3, \ldots, n,
\end{aligned}
$$

First, $a_{i 1}^{(2)}=0$. The triangle inequality implies that

$$
\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(2)}\right|=\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(1)}-\frac{a_{1 j}^{(1)} a_{i 1}^{(1)}}{a_{11}^{(1)}}\right| \leq \sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(1)}\right|+\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|\frac{a_{1 j}^{(1)} a_{11}^{(1)}}{a_{11}^{(1)}}\right|
$$

But since A is strictly diagonally dominant,

$$
\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(1)}\right|<\left|a_{i i}^{(1)}\right|-\left|a_{i 1}^{(1)}\right| \quad \text { and } \sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{1 j}^{(1)}\right|<\left|a_{11}^{(1)}\right|-\left|a_{1 i}^{(1)}\right|
$$

So

$$
\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(2)}\right|<\left|a_{i i}^{(1)}\right|-\left|a_{i 1}^{(1)}\right|+\frac{\left|a_{i 1}^{(1)}\right|}{\left|a_{11}^{(1)}\right|}\left(\left|a_{11}^{(1)}\right|-\left|a_{1 i}^{(1)}\right|\right)=\left|a_{i i}^{(1)}\right|-\frac{\left.\mid a_{i 1}^{(1)}\right)\left|a_{1 i}^{(1)}\right|}{\left|a_{11}^{(1)}\right|}
$$

The triangle inequality also implies that

$$
\left|a_{i i}^{(1)}\right|-\frac{\left|a_{i 1}^{(1)}\right|\left|a_{1 i}^{(1)}\right|}{\left|a_{11}^{(1)}\right|} \leq\left|a_{i i}^{(1)}-\frac{\left|a_{i 1}^{(1)}\right|\left|a_{1 i}^{(1)}\right|}{\left|a_{11}^{(1)}\right|}\right|=\left|a_{i i}^{(2)}\right| .
$$

which gives

$$
\sum_{\substack{j=2 \\ j \neq i}}^{n}\left|a_{i j}^{(2)}\right|<\left|a_{i i}^{(2)}\right|
$$

This establishes the strict diagonal dominance for rows $2, \ldots, n$. But the first row of $A^{(2)}$ and A are the same, so $A^{(2)}$ is strictly diagonally dominant.

The process for other matrices is similar.

Positive Definite Matrices

A matrix A is positive definite if it is symmetric and if $\mathbf{x}^{t} A \mathbf{x}>0$ for every n-dimensional vector $\mathbf{x} \neq \mathbf{0}$.

$$
\mathbf{x}^{t} A \mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
=\left[x_{1}, x_{2}, \cdots, x_{n}\right]\left[\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} x_{j} \\
\sum_{j=1}^{n} a_{2 j} x_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right]=\left[\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}\right]
$$

Example

Show that the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

is positive definite
Solution Suppose \mathbf{x} is any three-dimensional column vector. Then

$$
\mathbf{x}^{t} A \mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{rrr}
2 x_{1} & - & x_{2} \\
-x_{1} & + & 2 x_{2} \\
-x_{2} & -2 x_{3}
\end{array}\right] \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{2} x_{3}+2 x_{3}^{2}
\end{aligned}
$$

Rearranging the terms gives

$$
\begin{aligned}
\mathbf{x}^{t} A \mathbf{x} & =x_{1}^{2}+\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right)+\left(x_{2}^{2}-2 x_{2} x_{3}+x_{3}^{2}\right)+x_{3}^{2} \\
& =x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}
\end{aligned}
$$

which implies that

$$
x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}>0
$$

unless $x_{1}=x_{2}=x_{3}=0$.

Theorem

If A is an $n \times n$ positive definite matrix, then
(i) A has an inverse;
(ii) $a_{i i}>0$, for each $i=1,2, \ldots, n$;
(iii) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right| ; ~(i v) \quad\left(a_{i j}\right)^{2}<a_{i i} a_{j j}$, for each $i \neq j$.

Definition

A leading principal submatrix of a matrix A is a matrix of the form

$$
A_{k}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]
$$

for some $1 \leq k \leq n$.

Theorem

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Example

Show that the following matrix is positive definite,

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Solution Note that

$$
\begin{aligned}
& \operatorname{det} A_{1}=\operatorname{det}[2]=2>0, \\
& \operatorname{det} A_{2}=\operatorname{det}\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]=4-1=3>0,
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det} A_{3} & =\operatorname{det}\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]=2 \operatorname{det}\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]-(-1) \operatorname{det}\left[\begin{array}{rr}
-1 & -1 \\
0 & 2
\end{array}\right] \\
& =2(4-1)+(-2+0)=4>0
\end{aligned}
$$

In agreement with the previous theorem.

Theorem

The symmetric matrix A is positive definite if and only if Gaussian elimination without row interchanges can be performed on the linear system $A \mathbf{x}=\mathbf{b}$ with all pivot elements positive.

Corollary

LDL ${ }^{t}$ Factorization

The matrix A is positive definite if and only if A can be factored in the form
$L D L^{t}$, where L is lower triangular with 1 s on its diagonal and D is a
diagonal matrix with positive diagonal entries.

Corollary

Let A be a symmetric $n \times n$ matrix for which Gaussian elimination can be applied without row interchanges. Then A can be factored into $L D L^{t}$, where L is lower triangular with 1 son its diagonal and D is the diagonal matrix with $a_{11}^{(1)}, \ldots, a_{n n}^{(n)}$ on its diagonal.

Example

Determine the $L D L^{t}$ factorization of the positive definite matrix

$$
A=\left[\begin{array}{rrl}
4 & -1 & 1 \\
-1 & 4.25 & 2.75 \\
1 & 2.75 & 3.5
\end{array}\right]
$$

Solution The $L D L^{t}$ factorization has 1 s on the diagonal of the lower triangular matrix L so we need to have

$$
\begin{aligned}
A=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] & =\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{lll}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & l_{21} & l_{31} \\
0 & 1 & l_{32} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
d_{1} & d_{1} l_{21} & d_{1} l_{31} \\
d_{1} l_{21} & d_{2}+d_{1} l_{21}^{2} & d_{2} l_{32}+d_{1} l_{21} l_{31} \\
d_{1} l_{31} & d_{1} l_{21} l_{31}+d_{2} l_{32} & d_{1} l_{31}^{2}+d_{2} l_{32}^{2}+d_{3}
\end{array}\right]
\end{aligned}
$$

Thus

$a_{11}: 4=d_{1} \Rightarrow d_{1}=4, \quad a_{21}:-1=d_{1} l_{21} \Rightarrow l_{21}=-0.25$

$$
a_{31}: 1=d_{1} l_{31} \Rightarrow l_{31}=0.25, \quad a_{22}: 4.25=d_{2}+d_{1} l_{21}^{2} \Rightarrow d_{2}=4
$$

$a_{32}: 2.75=d_{1} l_{21} 1_{31}+d_{2} l_{32} \Rightarrow l_{32}=0.75, \quad a_{33}: 3.5=d_{1} l_{31}^{2}+d_{2} l_{32}^{2}+d_{3} \Rightarrow d_{3}=1$,
and we have

$$
A=L D L^{t}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.25 & 1 & 0 \\
0.25 & 0.75 & 1
\end{array}\right]\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -0.25 & 0.25 \\
0 & 1 & 0.75 \\
0 & 0 & 1
\end{array}\right] .
$$

Corollary

Cholesky Factorization
The matrix A is positive definite if and only if A can be factored in the form $L L^{t}$, where L is lower triangular with nonzero diagonal entries.

Example

Determine the Cholesky $L L^{t}$ factorization of the positive definite matrix

$$
A=\left[\begin{array}{rrl}
4 & -1 & 1 \\
-1 & 4.25 & 2.75 \\
1 & 2.75 & 3.5
\end{array}\right]
$$

Solution The $L L^{t}$ factorization does not necessarily has 1 s on the diagonal of the lower triangular matrix L so we need to have

$$
\begin{aligned}
A=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] & =\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{lll}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right] \\
& =\left[\begin{array}{lll}
l_{11}^{2} & l_{11} l_{21} & l_{11} l_{31} \\
l_{11} l_{21} & l_{21}^{2}+l_{22}^{2} & l_{21} l_{31}+l_{22} l_{32} \\
l_{11} l_{31} & l_{21} l_{31}+l_{22} l_{32} & l_{31}^{2}+l_{32}^{2}+l_{33}^{2}
\end{array}\right]
\end{aligned}
$$

Thus
$a_{11}: 4=l_{11}^{2} \Rightarrow l_{11}=2, \quad a_{21}: \quad-1=l_{11} l_{21} \Rightarrow l_{21}=-0.5$
$a_{31}: \quad 1=l_{11} l_{31} \Longrightarrow l_{31}=0.5$,
$a_{22}: \quad 4.25=l_{21}^{2}+l_{22}^{2} \Longrightarrow l_{22}=2$
$a_{32}: \quad 2.75=l_{21} l_{31}+l_{22} l_{32} \Longrightarrow l_{32}=1.5, \quad a_{33}: \quad 3.5=l_{31}^{2}+l_{32}^{2}+l_{33}^{2} \Longrightarrow l_{33}=1$,
and we have

$$
A=L L^{t}=\left[\begin{array}{cll}
2 & 0 & 0 \\
-0.5 & 2 & 0 \\
0.5 & 1.5 & 1
\end{array}\right]\left[\begin{array}{ccl}
2 & -0.5 & 0.5 \\
0 & 2 & 1.5 \\
0 & 0 & 1
\end{array}\right]
$$

Band Matrices

Matrices that all their nonzero entries concentrate about the diagonal.

band width $\quad w=p+q-1$

p : the number of diagonals above, and including, the mail diagonal on which nonzero entries may lie.
q : the number of diagonals below, and including, the mail diagonal on
which nonzero entries may lie.

$$
A=\left[\begin{array}{rrr}
7 & 2 & 0 \\
3 & 5 & -1 \\
0 & -5 & -6
\end{array}\right] \quad \begin{aligned}
& p=q=2 \\
& \mathrm{w}=2+2-1=3
\end{aligned}
$$

Tridiagonal Matrices

$$
p=q=2 \quad \text { Bandwidth }=3
$$

Crout Factorization for Tridiagonal Linear Systems
$A=L U$

The multiplication involved with $A=L U$ gives,

$$
a_{11}=l_{11}
$$

$a_{i, i-1}=l_{i, i-1}, \quad$ for each $i=2,3, \ldots, n$;
$a_{i i}=l_{i, i-1} u_{i-1, i}+l_{i i}, \quad$ for each $i=2,3, \ldots, n$;
$a_{i, i+1}=l_{i i} u_{i, i+1}, \quad$ for each $i=1,2, \ldots, n-1$.

