To prove that Gaussian elimination can be performed without row

. _ s
interchanges. we show that each of the matrices A?, A®, ..., A™

is strictly diagonally dominant. (at each step pivot elements are nonzero)

Since A is strictly diagonally dominant, a;; # 0 and A® can be formed
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First, a?‘lqj = 0. The triangle inequality implies that
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But since A is strictly diagonally dominant,
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The triangle mequality also implies that

1 |
(1} |f1( }||H( }| MO |ﬂ' ||ﬂ 49

— ”

which gives



H
2 : (2) (2)
|H;J,.' | < |ﬂ;; |
j=2
JF
This establishes the strict diagonal dominance for rows 2,..., n. But the

first row of A and A are the same, so A® is strictly diagonally dominant.

The process for other matrices is similar.

Positive Definite Matrices
A matrix A is positive definite if it is symmetric and if x'Ax > 0 for every

n-dimensional vector x £ 0.
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Example

Show that the matrix

[ 2 —] 0
A= —1 2 —]
0 —1 2 |

Is positive definite

Solution Suppose X 1s any three-dimensional column vector. Then

2 -1 0 X
X'AX = [x1.x2.x3] | —1 2 —1 X7
0 -1 2 X3




[ 2.1'] — X2 )
=[x.x02.x0]| —x1 + 2n — x;
| —X2» + 2.1'3 i

— 21‘1? — 2x1x0 + 2x§ — 2x7x3 + Zxéf.
Rearranging the terms gives
X'AX = x7 4+ (07 — 2x1x0 +x3) + (X3 — 2xox3 + x3) 4+ x3
= x7 4 (x; —x2)* + (x2 — x3)% + x3.

which implies that

X4 —x)+n—x3)"+x3>0

unless xj = x» = x3 = 0.



Theorem

If A is an n x n positive definite matrix, then

(i) A has an mverse:

(i) a; > 0, foreachi =1
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Definition

A leading principal submatrix of a matrix A is a matrix of the form

Ap =

forsome ]l <k < n.
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Theorem

A symmetric matrix A 1s positive definite if and only if each of its leading

principal submatrices has a positive determinant.

Example
Show that the following matrix is positive definite,

S
A=| -1 2 —I
0 -1 2

Solution Note that

detA; = det[2] =2 > 0.

2
det Ay = det _ ,



and

2 =10 2 —] 1 -]
detA; =det| -1 2 —I zzdet[ }—(—l)det[ ]
0 -1 2 0 2

=24-1D+(-2+0)=4>0,

In agreement with the previous theorem.

Theorem
The symmetric matrix A is positive definite if and only if Gaussian
elimination without row interchanges can be performed on the linear

system Ax = b with all pivot elements positive.



Corollary

LDL! Factorization

The matrix A 1s positive definite if and only 1f A can be factored in the form

LDL', where L 1s lower triangular with Is on its diagonal and D 1s a
diagonal matrix with positive diagonal entries.

Corollary

Let A be a symmetric n X n matrix for which Gaussian elimination can
be applied without row interchanges. Then A can be factored into LDL',

where L is lower triangular with 1son its diagonal and D is the diagonal

matrix with aﬂ}: ....a'™ on its diagonal.
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Example

Determine the LDL' factorization of the positive definite matrix

4 -1 1
A=| —1 425 275
1 275 35

Solution The LDL' factorization has 1s on the diagonal of the lower

triangular matrix L so we need to have
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Thus

a4 =dy=d =4 my: =1 =dly =l =-025
ay 21 =dily = by = 0.2, an 425 =dy+dily, = dy =4

ay : 275 = dilyly +dyly = Iy =075, ayy:35=dil +dily + = dy = 1,

and we have
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Corollary

Cholesky Factorization

The matrix A is positive definite if and only if A can be factored in the form

LL'. where L 1s lower triangular with nonzero diagonal entries.

Example

Determine the Cholesky LL' factorization of the positive definite matrix

4 —] 1 )
A= =1 425 2.75
1 2.75 3.5

Solution The LL' factorization does not necessarily has 1s on the

diagonal of the lower triangular matrix L so we need to have
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Band Matrices

Matrices that all their nonzero entries concentrate about the diagonal.

band width w=p+gq—1

p: the number of diagonals above, and including, the mail diagonal on
which nonzero entries may lie.
q : the number of diagonals below, and including, the mail diagonal on

which nonzero entries may lie.
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Tridiagonal Matrices

p=9q=2 Bandwidth = 3
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Crout Factorization for Tridiagonal Linear Systems
A=LU

BT D'.: """"""" 0 } 1l upp Oeeeeee
by, by, -, : 0 1
L=| 0 . and U=
0 0 “bunt L 0 0o




The multiplication involved with A = LU gives,

ajp =y
aji—1 — f;ﬁg_]. foreach 1 = l 3..... n.
a; = f{-,;_]u;_]’; + I{'f: foreacht =2.3.....n:

air1 = lju; ;. foreachi=1,2,....n— 1.



